Multi-view stereo analysis reveals anisotropy of prestrain, deformation, and growth in living skin

Buganza Tepole, A.; Gart, M.; Purnell, C. A.; Gosain, A. K.; Kuhl, E.

Biomech Model Mechanobiol. 2015 Jan 31; 14(5):1007-19

Abstract

Skin expansion delivers newly grown skin that maintains histological and mechanical features of the original tissue. Although it is the gold standard for cutaneous defect correction today, the underlying mechanisms remain poorly understood. Here we present a novel technique to quantify anisotropic prestrain, deformation, and growth in a porcine skin expansion model. Building on our recently proposed method, we combine two novel technologies, multi-view stereo and isogeometric analysis, to characterize skin kinematics: Upon explantation, a unit square retracts ex vivo to a square of average dimensions of [Formula: see text]. Upon expansion, the unit square deforms in vivo into a rectangle of average dimensions of [Formula: see text]. Deformations are larger parallel than perpendicular to the dorsal midline suggesting that skin responds anisotropically with smaller deformations along the skin tension lines. Upon expansion, the patch grows in vivo by [Formula: see text] with respect to the explanted, unexpanded state. Growth is larger parallel than perpendicular to the midline, suggesting that elevated stretch activates mechanotransduction pathways to stimulate tissue growth. The proposed method provides a powerful tool to characterize the kinematics of living skin. Our results shed light on the mechanobiology of skin and help us to better understand and optimize clinically relevant procedures in plastic and reconstructive surgery.

Read More on PubMed